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Abstract

A modi_ed two!dimensional quadrilateral plane stress element and a modi_ed three!dimensional brick
element have been developed to eliminate the weakness of the conventional _nite elements in determining
the stress distributions along free boundaries[ The results obtained by the said modi_ed elements are in good
agreement with the theoretical and experimental results and are superior to the conventional _nite element
results[ A comparison is made between the proposed approach of improving stress calculations and another
approach which employs the least square _tting method[ The comparison shows that the two approaches
provide comparable accuracy but the latter is more di.cult to implement[ Þ 0887 Elsevier Science Ltd[ All
rights reserved[

0[ Notation

x\ y\ z Cartesian coordinates
n\ s\ t local Cartesian coordinates with the n axis normal to the boundary
u\ v\ w displacement components
j\ h\ z isoparametric coordinates
sx\ sy\ sz normal stresses parallel to x\ y and z axes\ respectively
txy\ tyz\ tzx shear stresses in x\ y\ z coordinates
sn\ ss\ st normal stresses parallel to n\ s and t axes\ respectively
tns\ tst\ ttn shear stresses in n\ s and t coordinates
sj\ sh\ sz normal stresses parallel to j\ h and z axes\ respectively
tjh\ thz\ tzj shear stresses in j\ h and z coordinates
s nominal stress

1[ Introduction

There are many stress problems which require the determination of the stress distributions along
a free boundary with high degree of accuracy[ For example\ fatigue analysis of o}shore tubular

� Tel[] 99741 1747 4304[
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Fig[ 0[ Portal frame subjected to point loads[

joints are widely performed by the structural engineers who are interested in the hot spot stress\
i[e[\ maximum principal stress\ which is the most in~uential factor a}ecting the fatigue behaviour
of tubular joints[ Traditionally\ the {{hot spot|| stresses\ which occur at the weld toe of a tubular
joint\ are determined by extrapolation of stresses on the free surface of the brace or the chord of
the joint[ Attempts to determine the stress distributions along a free boundary reveal a weakness
in the conventional _nite element procedure[ The weakness of this conventional _nite element
technique is that\ in general\ the chosen element displacement functions do not implicitly satisfy
the conditions which prevail at a free boundary[ As a result\ calculations of the boundary stresses
based on the element nodal displacements yield non!zero values for the shear and normal stress
components\ with a corresponding error in the tangential stresses[ This is especially marked in the
vicinity of geometric stress concentrations\ since the boundary stresses can only be determined by
extrapolation or some arbitrary means of averaging[ Figure 0 shows a portal frame subjected to
point loads[ The unbalanced stress components have been clearly illustrated by Soh "0881#\ as
reproduced in Fig[ 1[

Soh "0881# has proposed a procedure to eliminate the above!mentioned weakness by employing
the method of least square _tting[ However\ the said procedure is tedious because it involves the
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Fig[ 1[ Unbalanced stress components obtained by the conventional _nite element method[

employment of high order polynomials for least square _tting after the determination of all nodal
displacements by the conventional _nite element method[ In this paper\ new elements will be
developed to eliminate the weakness of the conventional _nite element method[ The development
procedure and potential accuracy of these elements can be illustrated by considering the behaviour
of a two! and three!dimensional model subjected to prescribed loads\ as shown in Figs 2 and 3\
respectively[ The corresponding _nite element meshes generated are shown in Figs 4 and 5[

2[ Analysis

Soh "0881# has proposed that the traditional procedure be used to determine all the nodal
displacements without modi_cation[ Once the nodal displacements are obtained\ new displacement
functions\ "ff#\ are _tted by the method of least squares to all the nodes of the elements involved\
with the necessary and su.cient conditions imposed to those nodes lying on the free boundary of
the elements[ Figure 6 shows the 40 nodes involved in least square _tting for determining the
stresses at corner node 0 and mid!side nodes 1Ð4 on a free surface of a three!dimensional body[
Note that the necessary and su.cient conditions are implemented at the 10 nodes lying on the free
surface[ In the case of three!dimensional stress analysis\ the assumed displacement functions for
least square _tting can be expressed as
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Fig[ 2[ Rectangular plate with a central elliptic hold subjected to uniform tensile loads[

Fig[ 3[ A T tubular joint subjected to axial load[



A[ K[ Soh : International Journal of Solids and Structures 25 "0888# 788Ð806 892

Fig[ 4[ Mesh generated for two!dimensional _nite element analysis[

"ff# � ðCŁ"A# "0#

where

ðCŁ � &
c"x\ y\ z# 9 9

9 c"x\ y\ z# 9

9 9 c"x\ y\ z#'
and

"A# � "a0 a1 [ [ [ an#T
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Fig[ 5[ Finite element mesh for a quarter T joint[

Note that ðc"x\ y\ z#Ł is a row matrix consisting of powers and products of x\ y and z^ and a0\
a1\ [ [ [ \an are the coe.cients of the new displacement functions "ff#[

By _tting "ff# to the actual displacements of the 40 nodes involved using the method of least
squares\ a set of equations can be obtained and expressed as

"d¹# � &
ccf 9 9

9 ccf 9

9 9 ccf
' "A#¦"de# "1#

where "d¹# is a column vector consisting of the nodal displacements of the elements involved^ ðccfŁ
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Fig[ 6[ Nodes involved in least square _tting for determining three!dimensional stresses on a free surface[

is a coe.cient sub!matrix consisting of powers and products of x\ y\ and z^ and "de# is a column
vector consisting of error terms between the actual and _tted nodal displacements[

The normal stress\ sn\ and the tangential shear stresses\ tns and tnt\ on the free surface can be
expressed as

sn � f0"a0\ a1\ [ [ [ \ an\ x\ y\ z#¦"sn#e

tns � f1"a0\ a1\ [ [ [ \ an\ x\ y\ z#¦"tns#e

tnt � f2"a0\ a1\ [ [ [ \ an\ x\ y\ z#¦"tnt#e "2#

where f0\ f1 and f2 are the normal stress\ sn\ and the tangential shear stresses\ tns and tnt\
respectively\ obtained from the assumed displacement functions "ff#[ "sn#e\ "tns#e and "tnt#e are the
corresponding error terms[

By setting sn\ tns and tnt to zero at the 10 nodes lying on the free surface\ a set of equations can
be obtained[ This set of equations can be combined with the set provided by eqn "1#\ and thus\ we
obtain

"D# � ðCcŁ"A#¦"E# "3#

where "D# is a column vector consisting of nodal displacements and zeros^ ðCcŁ is a coe.cient
matrix consisting of products of x\ y and z^ and "E# is a column vector consisting of the di}erences
between the actual and best _tted displacements:stresses[



A[ K[ Soh : International Journal of Solids and Structures 25 "0888# 788Ð806895

"E#T"E# should be minimized in order to satisfy the least square condition[ Equation "3# can be
re!arranged as

"E# � "D#−ðCcŁ"A#

Therefore\

"E#T"E# � ""D#T−"A#T ðCcŁT#""D#−ðCcŁ"A##

� "D#T"D#−1"A#T ðCcŁT"D#¦"A#T ðCcŁT ðCcŁ"A#

Setting 1""E#T"E##:1"A# � 9 to satisfy the least square condition\ then

"A# �"ðCcŁT ðCcŁ#−0 ðCcŁT"D# "4#

The best _tted displacement functions obtained can then be used to determine the stress and strain
components at the nodes considered by employing the strainÐdisplacement equations and stressÐ
strain relations[

It is obvious that the assumed displacement functions "ff# must be high order polynomials of x\
y and z[ In the case of three!dimensional stress analysis using 19!noded isoparametric brick
elements\ the column vector "A# is required to have about 099 coe.cients in order to achieve a
meaningful least square _tting[ Thus\ it is not an easy task to determine "ðCcŁTðCcŁ#−0 because ðCcŁ
is sizeable[ One promising method of achieving the same objective without going through the
tedious procedure of least square _tting is to develop new elements with the prevailing conditions
at the free boundary implemented[

The displacement functions of a new element can be expressed as

"f# � ðNŁ"d#¦"g# "5#

where
ðN Ł � Element shape function matrix[
"d# � Element nodal displacement vector[
"g# � Additional displacement vector for implementation of the prevailing

conditions at the free boundary[

The prevailing conditions at the free boundary will be implemented on eqn "5# from which the
coe.cients of the additional displacement functions can be determined[ Hence\ eqn "5# can be
expressed as

" f # � ðNÞŁ"d# "6#

where ðNÞŁ is a modi_ed shape function matrix which consists of the original shape functions and
the contributions from the additional displacement functions[

The sti}ness matrix of the element can be obtained from

ðkŁ � g
0

−0 g
0

−0 g
0

−0

ðBŁT ðDŁ ðBŁ det ðJŁ dj dh dz "7#

where
ðBŁ � Element strain displacement matrix[
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� ðLŁ ðNÞŁ
ðLŁ � A suitable linear operator which relates the strain vector\ "o# to the

displacement vector\ "f#\ of the element[
ðDŁ � Elasticity matrix containing the appropriate material properties[

det ðJŁ � Determinant of the Jacobian matrix[

This type of element can be employed together with other types of elements to improve the accuracy
of the stresses computed at the free boundary[

2[0[ Two!dimensional stress analysis

Figure 7 shows a typical eight!noded isoparametric element "Bathe\ 0885#[ The displacement
components in the element are given by

u � s
7

i�0

Niui¦`0"j\ h#

v � s
7

i�0

Nivi¦`1"j\ h# "8#

where

N0 �
0
3

"0−j#"0−h#−
N4

1
−

N7

1

Fig[ 7[ Eight!noded isoparametric element[
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N1 �
0
3

"0¦j#"0−h#−
N4

1
−

N5

1

N2 �
0
3

"0¦j#"0¦h#−
N5

1
−

N6

1

N3 �
0
3

"0−j#"0¦h#−
N6

1
−

N7

1

N4 � 0
1
"0−j1#"0−h#

N5 � 0
1
"0¦j#"0−h1#

N6 � 0
1
"0−j1#"0¦h#

N7 � 0
1
"0−j#"0−h1# "09#

and ui and vi are nodal displacement components in the j and h directions\ respectively[ The
functions `0 and `1 are to be assumed based on the compatibility conditions that prevail at the
boundaries of the element[ In the case where one of the four edges of the element\ say h � 0\ is a
free boundary\ the said functions can be assumed to be

`j"j\ h# � Cj0"0−j1#"0−h1#¦Cj1j
1"0−j1#¦Cj2h

1"0−h1# "00#

where j � 0\ 1 and C00\ C01\ [ [ [ \ C12 are arbitrary constants[
Since the normal stress\ sh\ and the tangential shear stress\ thj\ along the free boundary are zero\

these two conditions are to be imposed on each of the nodes lying on the free boundary[ With
reference to Fig[ 7\ it can be shown that

sh �
E

"0−n1# $
1v
1h

¦n
1u
1j%

thj � G 0
1u
1h

¦
1v
1j1 "01#

where E and n are the modulus of elasticity and Poisson|s ratio of the material\ respectively[
By implementing these two conditions at the three nodes lying on the free edge\ the six arbitrary

constants can be determined\ i[e[\

C00 � 0
7
ðu0¦u1−u2−u3−1u4¦1u6Ł

C01 �
0
7 63"u2¦u3#−7u6¦

0
n

ðv1−v0¦2"v2−v3#−3"v5−v7#Ł7
C02 � 0

7
ðu0¦u1¦2"u2¦u3#−3"u5¦u7#¦1"v2−v3#Ł

C10 � 0
7
ðv0¦v1−"v2¦v3#−1"v4−v6#Ł

C11 � 0
7
ð−u0¦u1¦2"u2−u3#−3"u5−u7#¦3"v2¦v3#−7v6Ł
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Fig[ 8[ Twenty!noded isoparametric element[

C12 � 0
7
ðv0¦v1¦2"v2¦v3#−3"v5¦v7#¦1n"u2−u3#Ł

Thus\ ðNÞŁ can be established and the element sti}ness matrix\ ðkŁ can be developed[
With reference to Fig[ 4\ all the elements with a free boundary at the elliptic hole are of the

proposed element type and the rest of the elements are the traditional eight!noded isoparametric
quadrilateral elements[

2[1[ Three!dimensional stress analysis

Figure 8 shows a typical 19!noded isoparametric element "Bathe\ 0885#[ The displacement
components in the element are given by

u � s
19

i�0

Niui¦`0"j\ h\ z#

v � s
19

i�0

Nivi¦`1"j\ h\ z#

w � s
19

i�0

Niwi¦`2"j\ h\ z# "02#

where
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Nj �
0
3
"0−j1#"0¦hhj#"0¦zzj# for j � 06\ 07\ 08\ 19 "03#

Nk � 0
3
"0¦jjk#"0−h1#"0¦zzk# for k � 09\ 01\ 03\ 05 "04#

Nl �
0
3
"0¦jjl#"0¦hhl#"0−z1# for l � 8\ 00\ 02\ 04 "05#

Ni �
0
7
"0¦jji#"0¦hhi#"0¦zzi#−

0
1
"Nj¦Nk¦Nl# for i � 0\ 1\ [ [ [ \ 7 "06#

Note that "Nj¦Nk¦Nl#:1 refers to only the three nodes adjacent to node i^ and ji\ hi\ zi � 20[
wi are the nodal displacement components in the z direction^ and the functions `0\ `1 and `2 can

be assumed to be

`k"j\ h\ z# � Ck0"0−j1#"0−h1#¦Ck1"0−h1#"0−z1#¦Ck2"0−z1#"0−j1#

¦Ck3h
1z"0−j1#¦Ck4hz1"0−j1#¦Ck5z

1j"0−h1#

¦Ck6zj
1"0−h1#¦Ck7j

1"0−z1#¦Ck8jh1"0−z1# "07#

where k � 0\ 1 and 2 and C00\ C01\ [ [ [ \ C28 are arbitrary constants[
Since the two tangential shear stress\ thj and thz\ and the normal stress\ sh\ on the free surface

situated at h � 0 are zero\ these three conditions are to be imposed on each of the nodes lying on
the free surface[ Moreover\ the said conditions are imposed at the centre of the free surface so that
the additional displacement functions selected have the right number of terms to give equal
weighting to all three directions\ j\ h and z[ With reference to Fig[ 8\ it can be shown that

sh �
E"0−n#

"0−1n#"0¦n# $
1v
1h

¦
n

"0−n# 0
1u
1j

¦
1w
1z1%

thj � G 0
1u
1h

¦
1v
1j1

thz � G 0
1w
1h

¦
1v
1z1 "08#

By implementing these three conditions at the eight nodes and the centre point lying on the free
surface\ the 16 arbitrary constants can be expressed in terms of the nodal displacements of the
elements[ Thus\ ðNÞŁ can be established and the element sti}ness matrix\ ðkŁ can be developed[

With reference to Fig[ 5\ all the brick elements are of the proposed element type and the rest of
the elements are eight!noded shell elements "Bathe\ 0885#[

2[2[ The conventional method

One of the most commonly used methods for determining the stress components at a nodal
point lying on a free boundary is the graphical extrapolation method[ This method uses the values
of the stresses obtained for internal elements in the vicinity of the boundary node being considered[
The method can be easily illustrated by considering a two!dimensional problem\ as shown in
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Fig[ 09[ For the data presented in the _gure\ six nodal points have been used in making extra!
polations to determine sx\ sy and txy at each corner node along the free boundary of the structure[
Note that the values of sx\ sy and txy at each of the six nodal points are obtained by averaging the
corresponding nodal stresses of those elements sharing the said nodal point[ However\ in the case
of mid!side node only _ve nodal points were used in making extrapolations[ The values of sn\ ss

and tns are then determined using the Mohr circle at points where the normal to the boundary does
not coincide with either the x or y axis[

The procedure is also applicable to three!dimensional problems[ However\ the said procedure
needs modi_cation for the analysis of the present three!dimensional model due to the fact that
there are only two layers of solid elements through the thickness of the brace and chord "refer to
Fig[ 5#[ In the present case\ the hot spot stresses\ i[e[\ maximum principal stresses\ which occur at
the brace:chord intersection\ are determined using both the averaging and graphical extrapolation
methods[ Note that the former evaluates the stress components at a surface node by taking the
average of the corresponding components at the surrounding Gauss points[ For the data presented
in Fig[ 00\ only two nodal points have been used\ in order to be consistent with the experimental
procedure recommended by the U[K[ Department of Energy Guidance Notes "0871#\ in making
extrapolations to determine sx\ sy\ sz\ tyz\ tzx and txy at each node lying on the weld toe of the
chord side[ Note that the values of sx\ sy\ sz\ tyz\ tzx and txy at each of the two nodal points are
obtained by averaging the corresponding stress components of the surrounding Gauss points[ The
hot spot stress at the nodal point considered can then be determined by transformation of stresses[

Fig[ 09[ Two!dimensional stress components obtained at boundary by extrapolation[
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Fig[ 00[ Extrapolation of directional stress to the weld toe of the chord side for the three!dimensional analysis[

Fig[ 01[ Strain gauging plan[
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Fig[ 02[ Comparison of the theoretical and _nite element solutions for a two!dimensional model[

3[ Experimental test

A steel specimen "Fig[ 3# was strain gauged as per the recommendations of the U[K[ Department
of Energy Guidance Notes "0871#[ The strain gauges "Dally and Riley\ 0880# were placed around
the whole brace:chord intersection on both brace and chord at 11[4> intervals\ with additional
strain gauges being added to con_rm some trends[ Gauges were placed on the outside surface of
both brace and chord[ A plan view of the layout is shown in Fig[ 01[ Note that the gauges on the
brace are shown inside the brace diameter[ Three!element rectangular rosettes with 1 mm gauge
length were used for all strain measurements to enable calculation of principal stresses[ The strain
gauges measure strain caused by membrane and bending e}ects which occur on the outside surface
where the peak stresses were expected[
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Fig[ 03[ Unbalanced stress components obtained by the conventional _nite element method[

4[ Discussion of results

4[0[ Two!dimensional stress analysis

Figure 02 shows that the two modi_ed _nite element solutions\ one obtained using the proposed
element type and the other using the least square _tting method\ are in good agreement with the
theoretical solution[ Moreover\ the said modi_ed solutions are superior to the conventional _nite
element solution[ The maximum normalized tangential normal stress\ "ss:s#max\ obtained by the
former and latter modi_ed methods are 00[3 and 00[7\ respectively[ This is close to the cor!
responding theoretical value of 00[9[ However\ the corresponding value obtained by the con!
ventional _nite element method is only 5[4 which occurs at a location slightly away from that of
the other three solutions[

The improvements made by the use of the modi_ed element type and analysis procedure are
entirely due to the imposition of the correct free boundary conditions by setting sn and tns to zero[
It is a salutary experience to observe the magnitude of the unbalanced stress components\ as shown
in Fig[ 03\ which are yielded by the conventional _nite element method[ The high values of sn and
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Fig[ 04[ Stress distributions along the brace:chord intersection of a T joint subjected to axial load[
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Fig[ 05[ Unbalanced stress components obtained by the conventional _nite element method[

tns developed around the major axis of the elliptic hole provide an adequate explanation for the
error observed in the tangential boundary stress when this is calculated by the conventional
method[

4[1[ Three!dimensional stress analysis

Figure 04 shows the distributions of the stress concentration factor "hereafter called SCF#\ which
is de_ned as the ratio of the hot spot stress to the nominal stress at the brace\ obtained by the _nite
element and experimental techniques\ for the tubular joint subjected to an axial load[ Both the
modi_ed _nite element solutions and the experimental results are in good agreement and the results
are superior to the conventional _nite element solution\ especially in the region where high stress
concentrations occur[

The improvements made by the use of the modi_ed element type and analysis procedure are
again entirely due to the imposition of the correct free boundary conditions by setting sn\ tns and
ttn to zero[ The high values of sn\ tns and ttn developed near the weld toe of the tubular joint\ as
shown in Fig[ 05\ provide an adequate explanation for the error observed in the hot spot stress\ as
indicated by the SCF\ when this is calculated by the conventional method[

5[ Conclusions

The reliability and potential accuracy of the proposed element types for determining free
boundary stress distributions in two! and three!dimensional problems have been clearly illustrated[
It is worth noting that although the modi_ed analysis procedure can provide comparable accuracy
in determining free boundary stresses\ the tedious procedure of least square _tting can be avoided
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by employing the proposed element types[ Moreover\ the proposed approach for modifying _nite
elements is not con_ned to two!dimensional quadrilateral and three!dimensional brick elements\
but is equally applicable to all other element con_gurations with only minor or no modi_cations
to the proposed approach[
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